
What Does 
Scalable Resilience  

Look Like

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

Outline
•  SDCs are all the rage, but:
•  Failstop failures are not going away
•  We need schemes to handle them both

–  “all bets are off” – nathan (not true: we can combine both)
•  RTS based solutions can isolate applications from having to

deal with failures
–  Somehow, no talk covered this

•  Overdecomposition based solutions contribute some unique
solutions/enhancements

•  Checkpoint/restart (charm++ has been supporting fault
detection and automatic restart for 5+ years now)
–  Optimized by non-blocking protocols
–  Burst buffers?? We can do without for many apps.. Reuse the memory

(make it multi-purpose)
–  Many apps have relatively small mem footprint at checkpoint
–  These can be combined with SDC detection schemes

•  But the real fun is message-logging schemes

2

A couple of forks

•  MPI + x
•  “Task Models”
–  Asynchrony

•  Overdecomposition:
–  Most adaptivity

3

MPI+X

Overdecomposition

Task
Models

4

A Runtime System based on
Over-decomposition and

Migratability
can support resilience effetively

Runtime Systems can play a role
•  RTS based solutions to resilience are

desirable
–  They insulate the application from failures
–  RTS has information about the the machine

status and application status
–  Applications can provide information to the RTS

5

Failstop Faults
•  Silent Data Corruption is what everyone is

talking about
–  It is important
–  But failstop faults are not going away
–  We need to handle them both

6

Progress Rate is the right metric
•  Compared with
–  distributed systems theory, or
–  a mission to mars, or
–  real-time systems

•  HPC needs are different
–  We will accept a small probability of failure

•  In that case, we will redo the simulation
–  But we care about application making progressin

presence of faults

7

8

Time

Progress

Pow
er

Normal
Checkpoint-Resart
method

7/1/15 LBNL/LLNL

Power consumption
is continuous

Progress is slowed
down with failures

Fault Tolerance in Charm++/AMPI
•  Four approaches available:
–  Disk-based checkpoint/restart
–  In-local-storage double checkpoint w auto

restart
•  Demonstrated on 64k cores

–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Can tolerate frequent faults
•  Parallel restart and potential for handling faults during

recovery

9

In-memory checkpointing

•  Actually: In local-storage double checkpoint, with
automatic failure detection and restart

•  Is practical for many apps
–  Relatively small footprint at checkpoint time

•  Very fast times…
•  Demonstration challenge:

–  Works fine for clusters
–  For MPI-based implementations running at centers:

•  Scheduler does not allow job to continue on failure
•  Communication layers not fault tolerant

–  Fault injection: dieNow(),
–  Spare processors

7/1/15 LBNL/LLNL 10

7/1/15 LBNL/LLNL 11

7/1/15 LBNL/LLNL 12

7/1/15 LBNL/LLNL 13

Extensions to fault recovery
•  Based on the same over-decomposition ideas
–  A surprisingly large number of applications have

low memory footprint at checkpoint
–  But, if not:
–  Use NVRAM instead of DRAM for checkpoints

•  Non-blocking variants
•  [Cluster 2012] Xiang Ni et al.

–  Replica-based soft-and-hard-error handling
•  As a “gold-standard” to optimize against
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

14

Scalable Fault tolerance
•  Faults will be frequent at exascale (true??)
–  Failstop, and soft failures are both important

•  Checkpoint-restart may not scale
–  Or will it?
–  Requires all nodes to roll back even when just

one fails
•  Inefficient: computation and power

–  As MTBF goes lower, it becomes infeasible

7/1/15 LBNL/LLNL 15

Message-Logging
•  Basic Idea:

–  Only the processes/objects on the failed node go
back to the checkpoint!

–  Messages are stored by senders during execution
–  Periodic checkpoints still maintained
–  After a crash, reprocess “resent” messages to regain

state
•  Does it help at exascale?

–  Not really, or only a bit: Same time for recovery!
•  But with over-decomposition,

–  work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

–  Virtualization helps fault-free case as well

7/1/15 LBNL/LLNL 16

17

Message logging +
Object-based
virtualization

7/1/15 LBNL/LLNL

Power consumption
is lower during
recovery

Progress is faster
with failures

18

Cylinder surface: nodes of
the machine

Fail-stop recovery with message logging: A research vision

19

20

21

•  A fault hits a node
•  It regresses..
•  Its objects start re-execution,
•  IN PARALLEL on

neighboring nodes!

22

•  Re-execution continues even as
other nodes continue forward

•  Due to “parallel re-execution”
the neighborhood catches up

23

•  Back to normal execution

24

•  Another fault

25

•  Even as its neighborhood is
helping recover,

•  A 3rd fault hits
•  Concurrent recovery is possible

as long as the two failed nodes
are not checkpoint buddies

26

27

Takeaway
•  Adaptive Runtime System is a good layer to

implement resilience strategies
–  Especially with over-decomposition

•  In-local-memory double checkpoint with
automatic restart works well

•  If we need to tolerate more frequent failures
–  Message logging with parallel restart and

handling of most concurrent failures will do the
job

•  Need to combine with SDC handling

28

